KTBYTE logo
Python Level 3
[PYTHON 3]
KTBYTE 课程套餐
Class Projects

课程项目

学生将在 KTBlocks 系统上构建、测试和发布自己的游戏项目

CODING PLATFORM

编码平台

KTCoder 一体化编码平台支持我们的互动在线课程、专业化课程体系,以及学生对学习的热情。

STUDENT HELP HOURS

学生答疑辅导时间

答疑辅导时间由我们高素质的助教团队主导。这是帮你的代码获取即时反馈的免费便捷途径。

PROGRESS REPORTS

进度报告

KTBYTE 将通过电子邮件的方式向家长发送学生的课堂表现和成绩报告

COMPLETION CERTIFICATES

结业证书

学生完成每门课程后均可申请结业证书。

Class Description:

Python Level 3将引导学生深入理解Python编程。课程会先复习基础内容,例如列表、循环、函数等,然后逐步深入学习高级函数与算法、类的应用、以及JSON数据格式。这些内容将自然过渡到使用免费API进行实际项目开发。 课程后半部分将引入Python在数据统计与数据科学领域的应用,学生将学习如何使用Pandas的DataFrame、NumPy,以及 Matplotlib的绘图模块Pyplot。

Prerequisites:

适合13岁以上,完成 [Python 2] 或获得老师许可的学生

Syllabus:

Course Overview, Python Review

Review of basic Python concepts: Variables, conditionals, for loops, functions, general syntax.

Advanced Functions - *Args, **Kwargs

Review intermediate Python coding skills with imports and functions including outputs and kwargs.

Advanced List Methods

Review of lists, list alias, list slicing, pointers, cloning list methods

Numerical Python (NumPy) I

Efficiency of NumPy arrays, difference between NumPy arrays and regular Python lists. Basic NumPy array declaration methods.

Numerical Python (NumPy) II

Working with NumPy array operations, vectorized operations, time complexity.

Introductory Statistics

Central tendencies, mean vs median, population vs sample, standard deviation, variance.

Pandas & DataFrames I

Basics of Pandas, converting from .csv to DataFrames, Pandas Series, operations with DataFrames (e.g. .loc, .iloc, [], etc.).

Pandas & DataFrames II

Filtering data using complex conditionals (&, |), Slicing data, Grouping and sorting data.

File Input and Output

Reading from text (.txt) files, Data analysis using matplotlib.

APIs I

GET vs POST requests, getting data, handling data, analyzing data using statistical methods. Using Rapid API's Weather API. Visualizing data using matplotlib.

Recursive Algorithms I

Basic recursion, finding sum of a list recursively, Fibonacci sequence, factorials, recursive trees with Python turtles, introduction to markov chains

Recursive Algorithms II

Geometric series, intro to time complexity, finding time complexity recursively, bubble sort.

Random Simulations

Coding probabilistic simulations in Python, random walks, coin flipping, estimating pi using matplotlib, geometric probability.

Time Series Analysis

Analyzing time-series data using Python. Decomposing signals into trend, seasonality, and noise. Visualization with Matplotlib [Climate Data](https://drive.google.com/file/d/1KDqRRlieVyBqTf_rjTxJvT3--u54XEm1/view?usp=sharing)

Final Project

[Project Guideline](https://docs.google.com/document/d/1owLtjYdwTgDZdAWLo5s2FSNr2BmeHjJxjAMXjzIgFuo/edit?usp=sharing)<br> [Project Planning](https://docs.google.com/document/d/1bNQ1nMSzzcjNUccRmt_Iq4lR6lE8-alV8V8wyVJ80gM/edit?usp=sharing)